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Abstract
We consider a system of two coupled (2 + 1)-dimensional nonlinear
Schrödinger equations, describing two-component disc-shaped Bose–Einstein
condensates. We present three different asymptotic reductions of this system.
In particular, we derive the Mel’nikov system, the Yajima–Oikawa system as
well as the Davey–Stewartson system (the latter is found as a special case of
the Djordjevic–Redekopp system). Conditions for integrability of the reduced
systems, their soliton solutions and the asymptotic relevance of such solutions
to the original system are also discussed. Numerical results pertaining to the
reduction to the Davey–Stewartson system are found to be in good agreement
with the analytical predictions.

PACS numbers: 02.30.Jr, 03.75.Kk, 03.75.Lm

1. Introduction

The method of multiscale expansions is a powerful technique that is commonly used in
the theory of nonlinear waves, especially in cases characterized by the presence of several
different scales; in such cases, this technique usually leads to asymptotic evolution equations
more adequate to a given problem [1]. Using this method, it has been shown that several
systems integrable by the inverse scattering transform (IST) (see, e.g., [2]) can be reduced to
other integrable equations [3]. On the other hand, the multiscale expansion method has proved
to be extremely useful in the studies of soliton dynamics in non-integrable systems appearing
in various branches of physics. Below we will discuss two particular examples, namely the
rapidly growing fields of nonlinear optics [4] and Bose–Einstein condensates (BECs) [5],
where the appropriate physical model is the nonlinear Schrödinger (NLS) equation and its
variants.
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In the context of nonlinear optics, the multiscale expansion method has been used to
show that the defocusing NLS equation can be asymptotically reduced to a Korteweg–de
Vries (KdV) equation [6], or the Kadomtsev–Petviashvilli (KP) equation [7], in the (1 + 1)-
or (2 + 1)-dimensional geometry, respectively. This fact provided for a better insight into
the physics of optical solitons as it was possible to study their dynamics in generalized [8]
or strongly perturbed [9, 10] NLS models, as well as to analyse their transverse instabilities
[11] (see also the reviews [12] and references therein). Asymptotic reductions of coupled
NLS equations, which were used to study vector solitons, were reported as well. This way,
the Zakharov system and the Mel’nikov system were respectively derived in [13] and [14]
to describe the dynamics of a bright–dark or a bright–antidark soliton pair. Other relevant
studies, but dealing with solitons in optical media with a quadratic nonlinearity, were reported
as well [15, 16].

The progress in the field of nonlinear optics had an impact on studies of coherent nonlinear
excitations of matter waves appearing in the context of BECs. In particular, by means of the
multiscale expansion method, it was shown that shallow dark matter-wave solitons governed
by the Gross–Pitaevskii (GP) equation [5] can effectively be described by means of a KdV
[17] or a KP equation [18], in (1 + 1)- or (2 + 1)-dimensions, respectively. These asymptotic
reductions were also used to study the oscillations of dark solitons in the BEC regime [19] (see
also the recent work in [20]) and the Tonks–Girardeau regime [21]. Recently, the multiscale
expansion method was also used in the BEC context to analyse nonlinear excitations, such as
one-dimensional vector dark solitons [22] and two-dimensional solitons (dromions) [23]; in
the former case the analysis was based on the reduction of two coupled GP equations to two
coupled KdV equations, while in the latter case on the reduction of a (2 + 1)-dimensional GP
equation to the Davey–Stewartson-I system.

Although there is a significant amount of work that has been done for single-component
NLS models in one or higher dimensions, or for vector NLS models in one dimension, much
fewer results pertaining to vector NLS models in multidimensions have been reported (see,
e.g., [15, 16], as well as [24] where a general criterion for the stability of multi-component
solitary waves was proposed). The scope of this paper is to contribute in this direction and
present some asymptotic expansions for a system of two coupled, (2 + 1)-dimensional NLS
equations appearing in the context of BECs.

In particular, we consider a binary mixture of disc-shaped BECs, consisting of two
different spin states of the same isotope, such as, e.g., 87Rb [25] or 23Na [26]. This
system is described by the following dimensionless coupled NLS equations (see [27] and the
reviews [28]):

i∂tu = [− 1
2� + α|u|2 − β|v|2 + V (x, y)

]
u, (1)

i∂tv = [− 1
2� − β|u|2 − γ |v|2 + V (x, y)

]
v. (2)

In these equations, u and v describe the mean-field wavefunctions of the two-component
BEC, under very weak trapping conditions along the x–y plane in comparison with the z-
direction [5]. Moreover, � ≡ ∂2

x + ∂2
y is the Laplacian, which, for the disc-shaped BEC

under consideration, is taken to be two dimensional [27, 28]. The nonlinearity coefficients
α, γ and β in equations (1), (2) describe the intra-species and inter-species interactions
respectively and are proportional to the corresponding scattering lengths; note that the positive
(negative) scattering length corresponds to repulsive (attractive) atom–atom interaction. Note
that equations (1), (2) also appear in the context of optics, where they describe the complex
electric field envelopes of two different polarizations or wavelengths [4] (in this case, the
variable t is the propagation distance along the optical medium); in this context, the magnitudes
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and signs of the nonlinearity coefficients are usually fixed (typically, they are all such that all
interactions are self-focusing). Nevertheless, in the BEC context, both the magnitude and sign
of the nonlinearity coefficients (i.e. the scattering lengths) can be controlled via the Feshbach
resonance by an external spatially uniform magnetic [29] or optical [30] field (this also holds
for the coupling coefficient β [31]). Finally, the trapping potential V (x, y) in equations (1), (2)
is typically harmonic, having, e.g., the form V (x, y) = (1/2)�2r2, where r2 = x2 + y2 and
� is a dimensionless parameter. In the case of disc-shaped BECs under consideration, this
parameter is defined as the ratio of the confining frequencies in the r- and z-directions and is
often small (of order O(10−2) [27, 28]).

In what follows, we will consider the homogeneous version of equations (1), (2), i.e.
we will neglect the potential terms (see a relevant discussion below). We aim at showing
that, in the small-amplitude limit, three different asymptotic reductions of the homogeneous
NLS system are possible. In particular, we will obtain the Mel’nikov system, the Yajima–
Oikawa system and the Djordjevic–Redekopp system; for the latter, we obtain conditions for
its further reduction to the Davey–Stewartson system. The above-mentioned systems appear
in the contexts of plasma physics and water waves and have attracted attention in the theory of
nonlinear waves [2]. Our results concerning the Mel’nikov and the Davey–Stewartson systems
generalize the previous ones, reported in [14] and [13], respectively, that were obtained in
(1 + 1)-dimensional NLS models. Additionally, the asymptotic reduction of the (2 + 1)-
dimensional vector NLS model to the Yajima–Oikawa system appears, to the best of our
knowledge, for the first time. We will discuss the integrable cases in our reductions, as well
as the corresponding soliton solutions, especially in the framework of the original physical
problem.

Our analysis will be performed in the absence of the potential terms in equations (1), (2).
Although, strictly speaking, such a consideration restricts the validity of our analysis to the
homogeneous NLS system, or, in physical terms, to an untrapped binary BEC, the following
remarks should be made. First, even in the presence of the potential terms, our results are still
approximately valid but only locally, and particularly in a spatial region close to the minimum
of the potential (r → 0). Second, the effect of the inhomogeneity due to the presence of
the potential terms may still, in principle, be treated analytically, such as, e.g., in the case
of [19, 21]. In these studies, the asymptotic reduction of the GP equation (incorporating the
trapping potential) led to KdV equations with variable coefficients. Similarly, in our case,
we expect that inclusion of the potential terms will lead to inhomogeneous versions of the
Mel’nikov, Yajima–Oikawa and Davey–Stewartson systems. In fact, to analyse the effect of
external potentials, one should utilize techniques similar to those used in [19, 21] and perform
systematic numerical simulations; however, such a detailed study is beyond the scope of the
present work.

Finally, as far as the nonlinearity coefficients are concerned, we will assume that α > 0, i.e.
the u-component is repulsive, and let the signs of γ and β be arbitrary. This way, our analysis
is valid in either of the cases γ < 0 or γ > 0, corresponding, respectively, to a repulsive
or an attractive v-component. In particular, referring to binary BECs, the cases α > 0 and
γ < 0 are relevant, e.g., to a mixture of different spin states of 87Rb [25] or 23Na [26]; also,
α > 0 and γ > 0 are possible, e.g., in the 39K–87Rb BEC mixture [32], where the rubidium
(potassium) features repulsive (attractive) intra-species interaction. Note that in the latter case
(and, more generally, for a binary BEC consisting of two different species), the kinetic energy
term in equation (2), proportional to the Laplacian, should be multiplied by the ratio of the
atomic masses of the two species (see, e.g., [33]); that parameter would not significantly affect
our results (apart from some differences in the necessary algebraic conditions involved in the
derivation of the reduced systems, the final results would qualitatively be the same). Finally,
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in all the above cases, the coefficient β describing the inter-species interaction is repulsive,
i.e. β < 0 [25, 26, 31, 32, 34]; in our analysis, however, we will consider the more general
case with β ∈ �.

The paper is organized as follows. In section 2 we first analyse the linear regime
of the homogeneous NLS system and then consider the nonlinear regime, for which we
present the three different asymptotic reductions. In section 3, we present numerical results to
test the validity of our analysis using the example of the asymptotic reduction to the Davey–
Stewartson system. Finally, in section 4 we further elaborate the physical relevance of our
findings and summarize the conclusions of this work.

2. The asymptotic reductions

We consider the homogeneous version of equations (1), (2), namely,

iut + 1
2�u − α|u|2u + β|v|2u = 0, (3)

ivt + 1
2�v + β|u|2v + γ |v|2v = 0, (4)

where the subscripts denote partial derivatives. We introduce the Madelung transformation,

u = √
n exp(iθ), (5)

where n and φ denote the normalized density and phase of the u component, respectively.
Then, substituting equation (5) into equation (3), we obtain the following set of hydrodynamic
equations coupled with equation (4):

nt + ∇(n∇θ) = 0, (6)

θt +
1

2
(∇θ)2 − 1

2
√

n
�

√
n + αn − β|v|2 = 0, (7)

ivt +
1

2
�v + βnv + γ |v|2v = 0. (8)

A simple solution to equations (6)–(8) is n = 1, θ = −αt and v = 0, namely a continuous-
wave (cw) solution of equation (3) and the trivial solution of (4). To describe the
linear regime around this solution, we seek for solutions of equations (6)–(8) of the form
n = 1 + εr, θ = −αt + εφ and v = εq exp(iβt), where r and φ are perturbations and ε is a
formal small parameter. This way, equations (6)–(8) are reduced, to O(ε), to the following
system:

rt + �φ = 0, (9)

φt − 1
4�r + αr = 0, (10)

iqt + 1
2�q = 0. (11)

It is clear that equations (9) and (10) can be further reduced to the following equation:

rtt − α�r + 1
4�2r = 0. (12)

Assuming that the fundamental excitations of the system are characterized by a frequency
ω and a wave number k ≡

√
k2
x + k2

y , it is clear that equation (12) leads to a phase velocity
c2 ≡ (ω/k)2 = α +k2/4. Thus, in the long-wavelength limit (k → 0), small-amplitude waves
can propagate along the cw solution with the following ‘speed of sound’:

c2 = α > 0. (13)
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Note that the condition α > 0 also ensures the modulational stability of the aforementioned
cw solution. Additionally, it is readily seen that equation (11) (which is decoupled from
equations (9), (10)) admits a plane wave solution of the form q = exp[i(kxx + kyy − ωt)],
where the frequency ω and the wavenumbers kx, ky satisfy the dispersion relation ω =
1
2

(
k2
x + k2

y

)
.

The above analysis of the linear regime will be used below for obtaining the various
asymptotic reductions of equations (3), (4).

2.1. The Mel’nikov system

To reduce equations, (3), (4) to the Mel’nikov system, we introduce the following stretched
variables:

X = ε1/2(x − √
αt), Y = εy, T = ε3/2t, (14)

where ε is a formal small parameter connected to the amplitude of the solutions (see below).
We also consider small perturbations around the solution n = 1, θ = −αt and v = 0, which
are functions of the above-stretched variables. We thus seek solutions of equations (6)–(8) of
the following form:

n = 1 + εr(X, Y, T ), (15)

θ = −αt + ε1/2φ(X, Y, T ), (16)

v = εq(X, Y, T ) exp(iβt) exp[i(kxx + kyy − ωt)], (17)

where ω = 1
2

(
k2
x + k2

y

)
as earlier. This way, the following system is obtained for the unknown

perturbations r, φ and q:

−√
αrX + φXX + ε[rT + (rφX)X + φYY ] + O(ε2) = 0, (18)

−√
αφX + αr + ε

[
φT +

1

α
(φX)2 − 1

4
rXX − β|q|2

]
+ O(ε2) = 0, (19)

ikyqY +
1

2
qXX + βrq + iε1/2qr + ε

[
1

2
qYY + γ |q|2 q

]
= 0, (20)

where kx = √
α. To obtain self-consistent equations, we set φX = √

αr + ε�X, which leads
to the result

�XX + rT +
√

α(r2)X +
√

α∂−1
X rYY + O(ε) = 0, (21)

−√
α�X +

√
α∂−1

X rT + αr2 − 1
4 rXX − β|q|2 + O(ε) = 0, (22)

ikyqY + 1
2qXX + βrq + O(ε1/2) = 0. (23)

Finally, eliminating the function �X and rescaling the variables as r = (−3/
√

α)R, q =√
6/|β|Q, ξ =

√
8
√

αX, η = (−4
√

α/ky)Y and τ = −
√

8
√

αT , we end up to the following
dimensionless system:

(Rτ + 6RRξ + Rξξξ )ξ − 3Rηη + σ |Q|2ξξ = 0, (24)

iQη = Qξξ + χRQ, (25)

where χ = −3β/4α and σ = −sign(β). The system of equations (24) and (25) is composed
of a KP equation with a self-consistent source satisfying a Schrödinger equation and is known
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as the (2 + 1)-dimensional Mel’nikov system [35]. It has also been suggested in (1 + 1)-
dimensions, where it has the form of a KdV equation coupled with a stationary Schrödinger
equation [36]; in this case, the Mel’nikov system is an asymptotic reduction of a system
describing coupled nonlinear electron-plasma and ion-acoustic waves [37].

The Mel’nikov system is integrable only for χ = 1, i.e. for β = −(4/3)α < 0. It should
be noted that although this is a special case in our analysis, it could be realized in a real physical
system, namely in a rubidium–potassium BEC mixture, upon properly tuning the magnitude
of the respective atom–atom interactions through the Feshbach resonance mechanism. This
would be particularly interesting as it would permit us to tunably access an integrable limit of
the corresponding dynamical equations (in the regime, of course, where the above reductions
are valid). This, in turn, allows for soliton solutions which are explicitly available [35]. In this
setting, such waves are of the form of a vector dark–bright soliton, in the u- and v-components,
respectively. Finally, it should be mentioned that the present result generalizes that presented
in [14], referring to the (1 + 1)-dimensional case.

2.2. The Yajima–Oikawa system

We now consider a different asymptotic reduction of equations (3), (4), namely to the (2 + 1)-
dimensional Yajima–Oikawa system. Following the procedure of the previous subsection, we
first introduce the following stretched variables:

X = ε1/2(x − √
αt), Y = ε3/4y, T = εt, (26)

and then look for solutions of equations (6)–(8) of the following form:

n = 1 + εr(X, Y, T ), (27)

θ = −αt + ε1/2φ(X, Y, T ), (28)

v = ε3/4q(X, Y, T ) exp(iβt) exp[i(kxx + kyy − ωt)]. (29)

Performing similar calculations as in the first reduction, we obtain the following system for
the unknown functions r, φ and q:

−√
αrX + φXX + ε1/2(rT + φYY ) + ε(rφX)X + O(ε3/2) = 0, (30)

−√
αφX + αr + ε1/2(φT − β|q|2) + ε

[
(φX)2 − 1

4 rXX

]
+ O(ε3/2) = 0, (31)

iqT + 1
2qXX + βrq + ε1/2

(
1
2qYY + γ |q|2q) = 0, (32)

where again we have kx = √
α, ky = 0 and ω = 1

2

(
k2
x + k2

y

)
. To obtain self-consistent

equations, we set φX = √
αr + ε1/2�X and eliminate �X from the leading order. Then,

introducing the scale transformations ξ =
√

8
√

αX, η = (83√α)1/4Y , τ = 4
√

αT , r =
−(4

√
α/β)R and q = [(2

√
α/β)4

√
8
√

α]Q, we finally obtain the following dimensionless
system:

iQτ + Qξξ − RQ = 0, (33)(
Rτ + |Q|2ξ

)
ξ

+ Rηη = 0. (34)

Equations (33), (34) constitute the so-called Yajima–Oikawa system [38] in (2 + 1)-
dimensions. This is a long–short wave interaction system, which has originally been suggested
to describe Langmuir waves coupled with ion-acoustic waves in plasmas. The Yajima–Oikawa
system is integrable in the case when Rη = 0. Soliton solutions can be found in this case [38],
which, in our problem, and similarly to the case of the Mel’nikov system, have the form of a
vector dark–bright soliton, in the u- and v-components, respectively.
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2.3. The Davey–Stewartson system

Finally, using a different scaling, a reduction of the system (3), (4) to the so-called Davey–
Stewartson system can be obtained as follows. First, we introduce the stretched variables

X = ε1/2(x − ct), Y = ε1/2y, T = εt, (35)

where the velocity c is an arbitrary parameter. Then, we consider solutions of
equations (6)–(8) having the following form:

n = 1 + εr(X, Y, T ), (36)

θ = −αt + ε1/2φ(X, Y, T ), (37)

v = ε1/2q(X, Y, T ) exp(iβt) exp[i(kxx + kyy − ωt)]. (38)

This way, the following system is obtained:

−crX + �φ + ε1/2rT + ε∇(r∇φ) = 0, (39)

−cφX + αr − β|q|2 + ε1/2φT + ε
[
(∇φ)2 − 1

4�r
]

+ O(ε3/2) = 0, (40)

iqT + 1
2�q + βrq + γ |q|2q = 0. (41)

To the leading order, we eliminate r and find relations connecting the parameters involved:
kx = c, ky = 0 and ω = 1

2

(
k2
x + k2

y

)
; we also find the following equation connecting the

unknown functions φ and q:

r = c

α
φX +

β

α
|q|2 + O(ε1/2). (42)

Then, introducing the function V = φX, after straightforward manipulations, we obtain the
following system of equations:

iqT +
1

2
�q +

βc

α
V q +

(
γ +

β2

α

)
|q|2q = 0, (43)

(
1 − c2

α

)
VXX + VYY = cβ

α
|q|2XX. (44)

Equations (43), (44) are in the form of the so-called Djordjevic–Redekopp (DR) system,
which, in the theory of water waves, describes capillary-gravity waves [39]. This result, i.e.
the small-amplitude limit reduction of equations (1), (2) to the DR system, resembles the
result obtained in [13], where a vector (1 + 1)-dimensional NLS equation was reduced to the
generalized Zakharov equations.

Although the DR system is known to be in general nonintegrable, there exist conditions
for integrability (which were found by reducing the DR system to the integrable Davey–
Stewartson system by properly selected scale transformations and imposing satisfaction
of additional algebraic conditions). Following this procedure in the particular case of
equations (43), (44), we introduce the transformations ξ = X, η = Y, τ = T ,

V = −(
√

2α/2β)R and q = (
√

α/|β|)Q. Additionally, under the assumption that c = √
2α

(recall that the parameter c is arbitrary), the DR system (43), (44) is transformed to the form,

Rξξ − Rηη − 2|Q|2ξξ = 0, (45)

iQτ + 1
2 (Qξξ + Qηη) − RQ + χ |Q|2Q = 0, (46)
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where χ = 1 + αγ/β2. In the case χ = 1, or for γ = 0 (since α �= 0), equations (45), (46) are
known as the Davey–Stewartson (DS) system, which has originally been derived in the theory
of water waves [40]. In fact, the DS system is a shallow-water limit of the Benney–Roskes
equations [41], where Q is the amplitude of a surface wave packet and R characterizes the
mean flow generated by this surface wave. Note that in addition to fluid dynamics, the DS
system has also been obtained in different contexts, such as nonlinear optics [15, 16], BECs
[23], plasma physics [42], magnetics [43], lattice dynamics [44], and so on.

The particular elliptic-hyperbolic version of the DS system (45), (46) is known as the DS-I
system, which is completely integrable by the inverse scattering transform [2]. In this case,
and in the physical context at hand, the most interesting soliton solutions are the localized,
exponentially decaying two-dimensional solitons driven by nontrivial boundary conditions,
which have been derived for the DS-I equations [45]. These solitons are known as ‘dromions’
because they travel on the tracks described by the mean flow (note that in Greek ‘dromos’ means
‘track’). In our case, i.e. in the framework of equations (3), (4), such a solution corresponds to
a bright 2D soliton (the dromion) in the v-component, driven by two intersecting dark-soliton
stripes in the u-component.

As mentioned above, formally such a solution is possible for γ = 0, i.e. physically
speaking, when there is no atom–atom interaction in the v-component. Nevertheless, this may
also happen for γ = O(εj ), with j � 1/2, a choice that transfers the corresponding term
(αγ /β2)|Q|2Q to the next order of approximation. In physical terms, such a situation (with
weak inter-atomic interactions in the one BEC species) may, once again, be realized by means
of the Feshbach resonance mechanism, i.e. upon utilizing proper external magnetic fields to
‘drive’ the scattering length of the particular species sufficiently close to zero.

Finally, let us analyse some additional possibilities concerning the choice of the arbitrary
parameter c. First, if c = √

α (the choice made in previous subsections), the DR
system (43), (44) reads

iqT +
1

2
�q +

β√
α

V q +

(
γ +

β2

α

)
|q|2q = 0 (47)

β√
α

|q|2XX = VYY . (48)

This choice is always secular in Y if |q|2 depends only on X. Another choice is c = 0, for
which we have V = 0 and the system is reduced to the (2 + 1)-dimensional NLS equation:

iqT +
1

2
�q +

(
γ +

β2

α

)
|q|2q = 0. (49)

Generally speaking, c = kx where kx is the driving parameter.

3. Numerical results

It is clear that the three different asymptotic reductions lead to different types of approximate
soliton solutions of the original NLS system of equations (3), (4). The study of the dynamics
of these solutions in the framework of the original system is an interesting issue by its
own right, and may also be quite relevant to the BEC experiments. In particular, one can
use solitonic solutions from the proposed reduced systems to initialize the dynamics of
equations (3), (4). As an example, we will consider hereafter the reduction to the DS-I system,
which (as mentioned above) gives rise to the exponentially decaying 2D solitons known as
‘dromions’. The general dromion solution of equations (45), (46) can be found in [45]
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(see also [2]). Here, we assume the special case of a dromion solution for the Q-component,
expressed in the form

Q(X̃, Ỹ , T ) = Q1(X̃, Ỹ , T )

Q2(X̃, Ỹ , T )
, (50)

where X̃ ≡ X + Y, Ỹ ≡ X − Y and the functions Q1,Q2 are given by

Q1 = 4i exp[−(1 + i)(X̃ + Ỹ ) − 4T ], (51)

Q2 = 1 + (1 + exp(−2X̃ − 4T ))(1 + exp(−2Ỹ − 4T )). (52)

In the R-component, the boundary conditions associated with the above dromion are

R1(X̃,−∞, T ) = −2 sech2(X̃ + 2T ), (53)

R2(−∞, Ỹ , T ) = −2 sech2(Ỹ + 2T ). (54)

With regard to these boundary conditions, equation (45) can be formally integrated to express
the mean flow (in the above-mentioned hydrodynamic interpretation) in terms of the local
intensity |Q|2 of the surface wave:

R(X̃, Ỹ , T ) = −|Q|2 + R1 + R2 − 1

2

(∫ X̃

−∞
(|Q|2)Ỹ dX̃′ +

∫ Ỹ

−∞
(|Q|2)X̃ dỸ ′

)
. (55)

Now, we may use these expressions, together with the definitions of the fields in
equations (36)–(38) and the stretched variables in equation (35), to initialize the approximate
soliton solutions of equations (3), (4). Then, we can readily find the relevant initial conditions
to numerically integrate the original NLS system and study the dynamics of the solutions.

Following the above procedure, we have then used the split-step Fourier method to
numerically integrate equations (3), (4) with the following initial conditions:

u(0) =
√[

1 − 2ε

β
(|Q0(x̃, ỹ)|2 + sech2(ε1/2x̃) + sech2(ε1/2ỹ))

]
ub, (56)

v(0) =
√

εa

β
Q0(x̃, ỹ) exp(i

√
2ax), (57)

where x̃ ≡ x + y, ỹ ≡ x − y, and

Q0(x̃, ỹ) = 4i exp(−ε1/2(1 + i)(x̃ + ỹ))

(1 + exp(−2ε1/2x̃))(1 + exp(−2ε1/2ỹ)) + 1
. (58)

Note that in equation (56), the background field ub, which would be ub ≡ 1 in the
infinite system, in the simulations was taken to be a very broad super-Gaussian of the form
ub = exp[−((x2 + y2)/R2)8], with R = 200. This way, we emulated the fact that the
background is of finite extent in a real BEC experiment. The condensate is always confined to
an external potential (which, here, is assumed to be a box-like one) and, as a result, it always
has a finite size determined, e.g. by the Thomas–Fermi approximation [5].

The initial conditions (56), (57) correspond to the dromion in the v-component, and two
dark stripes (corresponding to the wave forms R1 and R2 in equations (53), (54)) on top of a
finite-extent background in the u-component; also, at the point of intersection of these stripes,
there exists an additional hump arising from the term ∼|Q|2 in equation (55). For simplicity
of computation, we have only used the first three terms of equation (55). The resulting
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Figure 1. Top panels: contour plots of the density |v|2 of the dromion (left panel) and the density
|u|2 of the configuration with the intersecting dark-soliton stripes in the u-component (right panel)
at t = 0. Parameters in the NLS model are α = 1, β = −1, γ = −0.1, while ε = 0.1. Bottom
panels: same as in top panels but at t = 35, obtained by direct numerical integration of the NLS
equations. Note that the dromion has been slightly dispersed and has lost ≈45% of its initial power
(left panel). On the other hand, each of the dark stripes in the u-component has split into two (right
panel). The stripes generated by the splitting travel along the +y-direction and drag the dromion’s
component in the v-field.

(This figure is in colour only in the electronic version)

configuration in the u-component may be identified as a superposition of two intersecting dark
solitons and a dark localized hump located at the intersection point. The initial configurations
of both the u- and v-fields are shown in the top panels of figure 1; here, the parameters in
the coupled NLS equations are α = 1, β = −1 and γ = −0.1, while the small parameter
was ε = 0.1 (for the choice of γ , recall that this parameter should be small so that the
reduction to the DS-I system is valid). In physical terms, such a choice may correspond to
a spin state mixture of the 87Rb condensate (described by the mean-field wavefunctions u
and v), with the scattering length of one state (v-component) set to a relatively small value
utilizing the Feshbach resonance control via external magnetic fields. Note that the results of
the simulations (see below) were similar, both qualitatively and quantitatively, in the case of
γ = + 0.1, a choice corresponding, e.g. to a 39K–87Rb BEC mixture.

The simulations have shown that, strictly speaking, the dromion is unstable, persisting
up to t ≈ 100, while slowly dispersing and decaying. In particular, as shown in the bottom
left panel of figure 1, the dromion loses ≈45% of its initial peak power at t = 35. Note that
corresponding to equations (3), (4), the dimensional time unit is of the order of a millisecond
[28]; this result indicates that the dromion may be observed in a real BEC experiment. On
the other hand, the evolution of the u-component (i.e. of the two dark stripes carved in the
finite-extent background which guide the dromion) is also an interesting issue deserving
consideration. To understand this evolution, we note the following. If an additional, properly
adjusted, phase was assumed under the initial condition (56) (see the expressions for u and
θ in equations (5), (36) and (37)), then, asymptotically as x, y → ±∞, these dark stripes
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could be made true dark solitons. Indeed, one can determine the phase θ via φ by integrating
equation (42) with respect to X; this way, the integral of R (and, in particular, the integrals of
R1 and R2 in equations (53) and (54)) will produce terms ∼ tanh(x + y) and tanh(x − y) in
θ , which display characteristic phase jumps of dark solitons (see [9]). However, since such
a phase field was not introduced in the simulations (i.e. the actual phase has even instead of
odd parity), each of the two stripes splits into two counter-propagating ones, as seen in the
bottom right panel of figure 1. In the new configuration generated by the splitting, each dark
stripe features a correct phase distribution, with the odd symmetry (not shown in the figure),
i.e. it is a genuine shallow dark-soliton stripe. Note that the secondary dark solitons (along
with the above-mentioned dark hump trapped at their intersection point) travelling along the
+y-direction steer the dromion’s v-component. It should also be mentioned that, due to the
splitting process, the dark stripes evolve having half the appropriate amplitude. Numerical
simulations that have been performed (not shown here) suggest that if the initial amplitude of
the dark stripes is multiplied by a factor of 2, then the dromion decays much slower, losing
just ≈20% of its peak power at t = 35 (as opposed to ≈45% shown in figure 1). This means
that, in real time units, the lifetime of the dromion is of the order of 100 ms and thus it has
indeed a good chance to be observed experimentally.

4. Conclusions and outlook

In this work, we have found several asymptotic reductions of two nonlinearly coupled (2 + 1)-
dimensional nonlinear Schrödinger equations. In particular, in the small-amplitude limit, and
for different choices of stretched coordinates, we have derived the Mel’nikov system, the
Yajima–Oikawa system and the Davey–Stewartson system. The latter was found as a special
case of the Djordjevic–Redekopp system. Conditions for integrability of the reduced systems,
as well as their soliton solutions have also been discussed.

The results can be applied in the context of BECs in which the considered NLS system
describes a two-component disc-shaped condensate. Although our analysis was performed for
an untrapped BEC, the results are still approximately valid in the case of a trapped condensate,
but locally, i.e. in a spatial region close to the trap’s minimum. The results are valid in both
cases of repulsive–repulsive and repulsive–attractive species, such as the spin state mixture of
87Rb or 23Na, and the 39K–87Rb BEC mixture, respectively (in both cases, the inter-species
interaction is repulsive).

The three reduced systems were derived upon considering different asymptotic scales in
space and time, as well as different asymptotic expansions of the unknown fields. Apparently,
these scalings characterize (and are characterized by) the exact soliton solutions of each of the
reduced models. These solutions can subsequently be used to construct approximate soliton
solutions of the original NLS equations. It is, therefore, interesting to consider the differences
between the asymptotic regimes and discuss their physical relevance.

In this respect, we first note that none of these scalings is more physically relevant than the
other. They are all equally relevant but in different settings. As general asymptotic reduction
theory dictates, the relevant scalings are appropriate for corresponding temporal and spatial
scales, e.g. when in the Mel’nikov system we scale T = ε3/2t , the scaling is relevant for times
of O(ε−3/2), when in the Yajima–Oikawa and DS systems we scale time T = εt , the scaling is
valid for times of O(ε−1), and similar considerations are applicable for the respective spatial
scales of the reductions.

Then, following the above arguments, a natural question would be: Since ε is nothing
but a formal parameter, what practically determines these temporal and spatial scales defined
above, for which the corresponding reductions are physically relevant? The answer hinges



7716 M Aguero et al

on the scaling of the fields themselves and the number of atoms in each BEC component.
In particular, if we initialize a dark–bright soliton of the Mel’nikov system, or of the
Yajima–Oikawa system, then the corresponding number of atoms in the bright component
(N2 = ε

∫ |q|2 dx dy in the first case and N2 = ε3/2
∫ |q|2 dx dy in the second) will determine

the relevant scaling parameter ε, and as such the spatial and temporal scales over which
we should expect to see such a structure persist. Note, by the way, that if two different
scalings give the same type of structure (as the two scalings above both yield a dark–
bright solitary wave), the fact that will determine which one of the two is relevant is the
profile/number of atoms in the first component (in comparison with those of the second
component). In fact, in the Mel’nikov case, the size of the notch of atoms in the centre of the
condensate scales similarly to the size of the density of atoms in the second component, while
in the Yajima–Oikawa system that is no longer the case. Thus, for a given system (i.e. fixing
the magnitudes and signs of α, β and γ ), and for a given initial profile/number of atoms in
the two components (i.e. fixing the size and scaling of ε in them), we can, based on the above
considerations, extract the type of reduction that will be relevant and the spatial and temporal
scales over which it will be expected to persist.

Turning back to the ‘outcome’ of the reductions, let us discuss now the dynamics of the
soliton solutions of the reduced systems in the framework of the original NLS system. We
have performed numerical simulations in the case of the Davey–Stewartson system and our
analytical predictions have been found to be in a fairly good agreement with the numerical
results. In particular, we have found that the predicted dromion solution persists up to times
relevant to experiments. The dromion loses half of its initial power after propagating for a
physical time of order of 100 ms.

It would also be interesting to use solitonic solutions of the Mel’nikov and Yajima–
Oikawa systems to initialize the dynamics of the coupled nonlinear Schrödinger system. Such
a study could reveal other interesting phenomena due to dimensionality, such as the transverse
modulational instability of soliton stripes occurring in a single component (2 + 1)-dimensional
NLS equation, leading to vortex formation [7, 11]. In particular, the soliton solutions of the
(1 + 1)-dimensional versions of the Mel’nikov and Yajima–Oikawa systems, which satisfy
their (2 + 1)-dimensional counterparts, are expected to be subject to this instability when
embedded in the 2D space. Such an investigation would be particularly relevant also in the
presence of external trapping potentials, i.e. in the framework of equations (1), (2). Then, if
instabilities due to dimensionality manifested themselves, it would be interesting to observe
the dynamics of the resulting nonlinear structures, such as vortices (see, e.g. the reviews [28]).
However, such a detailed investigation is beyond the scope of this work.

Finally, another interesting direction, also relevant to BECs, is the analytical treatment of
equations (1), (2), incorporating the potential terms. Such a study is in principle possible (see
[19, 21]) and is expected to lead to inhomogeneous versions of the reduced systems. This
way, novel inhomogeneous evolution equations of physical significance could be derived.

Relevant studies, along the lines suggested above, are currently in progress and the results
will be reported elsewhere.
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J. D 28 181
[34] Ferrari G, Inguscio M, Jastrzebski W, Modugno G, Roati G and Simoni A 2002 Phys. Rev. Lett. 89 053202
[35] Mel’nikov V K 1986 Phys. Lett. A 118 22

Mel’nikov V K 1987 J. Math. Phys. 28 2603
[36] Mel’nikov V K 1988 Phys. Lett. A 128 488
[37] Nishikawa K, Hojo H, Mima K and Ikezi H 1974 Phys. Rev. Lett. 33 148
[38] Yajima N and Oikawa M 1976 Prog. Theor. Phys. 56 1719
[39] Djordjevic V and Redekopp L 1977 J. Fluid Mech. 79 703

http://dx.doi.org/10.1016/0167-2789(86)90214-9
http://dx.doi.org/10.1103/PhysRevA.42.1757
http://dx.doi.org/10.1016/S0375-9601(99)00753-7
http://dx.doi.org/10.1088/0305-4470/29/13/028
http://dx.doi.org/10.1016/S0375-9601(98)00653-7
http://dx.doi.org/10.1103/PhysRevE.51.5016
http://dx.doi.org/10.1016/S0370-1573(97)00073-2
http://dx.doi.org/10.1016/S0370-1573(99)00106-4
http://dx.doi.org/10.1016/S0375-9601(01)00380-2
http://dx.doi.org/10.1103/PhysRevE.63.046605
http://dx.doi.org/10.1088/0305-4470/31/13/011
http://dx.doi.org/10.1088/0305-4470/31/22/013
http://dx.doi.org/10.1103/PhysRevA.64.013617
http://dx.doi.org/10.1103/PhysRevA.67.023604
http://dx.doi.org/10.1103/PhysRevA.65.053605
http://dx.doi.org/10.1103/PhysRevE.72.016615
http://dx.doi.org/10.1103/PhysRevA.70.015601
http://dx.doi.org/10.1103/PhysRevE.72.026616
http://dx.doi.org/10.1103/PhysRevE.72.036621
http://dx.doi.org/10.1103/PhysRevE.62.8668
http://dx.doi.org/10.1103/PhysRevLett.78.586
http://dx.doi.org/10.1103/PhysRevLett.81.1539
http://dx.doi.org/10.1103/PhysRevLett.80.2027
http://dx.doi.org/10.1103/PhysRevA.70.043616
http://dx.doi.org/10.1142/S0217984904006809
http://dx.doi.org/10.1038/32354
http://dx.doi.org/10.1038/35085500
http://dx.doi.org/10.1103/PhysRevLett.77.2913
http://dx.doi.org/10.1103/PhysRevLett.93.123001
http://dx.doi.org/10.1103/PhysRevLett.90.163202
http://dx.doi.org/10.1126/science.1066687
http://dx.doi.org/10.1103/PhysRevLett.89.190404
http://dx.doi.org/10.1140/epjd/e2003-00311-6
http://dx.doi.org/10.1103/PhysRevLett.89.053202
http://dx.doi.org/10.1016/0375-9601(86)90527-X
http://dx.doi.org/10.1063/1.527752
http://dx.doi.org/10.1016/0375-9601(88)90881-X
http://dx.doi.org/10.1103/PhysRevLett.33.148
http://dx.doi.org/10.1143/PTP.56.1719
http://dx.doi.org/10.1017/S0022112077000408


7718 M Aguero et al

[40] Davey A and Stewartson K 1974 Proc. R. Soc. Lond. A 338 101
[41] Benney D J and Roskes G J 1969 Stud. Appl. Math. 48 377
[42] Khismatulin D B and Akhatov I Sh 2001 Phys. Fluids 13 3582
[43] Leblond H 1999 J. Phys. A: Math. Gen. 32 7907
[44] Huang G, Konotop V V, Tam H W and Hu B 2001 Phys. Rev. E 64 056619
[45] Boiti M, Leon J J, Martina L and Pempinelli F 1988 Phys. Lett. A 132 432

Fokas A S and Santini P M 1989 Phys. Rev. Lett. 63 1329
Fokas A S and Santini P M 1990 Physica D 44 99

http://dx.doi.org/10.1063/1.1416502
http://dx.doi.org/10.1088/0305-4470/32/45/308
http://dx.doi.org/10.1103/PhysRevE.64.056619
http://dx.doi.org/10.1016/0375-9601(88)90508-7
http://dx.doi.org/10.1103/PhysRevLett.63.1329
http://dx.doi.org/10.1016/0167-2789(90)90050-Y

	1. Introduction
	2. The asymptotic reductions
	2.1. The Mel'nikov system
	2.2. The Yajima--Oikawa system
	2.3. The Davey--Stewartson system

	3. Numerical results
	4. Conclusions and outlook
	Acknowledgments
	References

